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Elastic constants of two dental porcelains 

HANS ROLF K#,SE*, JOHN A L O Y I U S  TESK 
Dental and Medical Materials, Polymers Division, National Bureau of Standards, 
Washington, DC 20234, USA 

ELDON D A R R E L  CASE? 
Department of Materials Science and Mineral Engineering, University of California, 
Berkeley, California 94720, USA 

The development of stress that affects the bonding in porcelain-fused-to-metal (PFM) sys- 
tems can be influenced by the temperature dependence of the elastic constants of both 
systems. Instead of using the normal, static procedure, e.g. determining the slope of a 
stress-strain curve, and measuring the lateral and vertical strains, in this study the sonic 
resonance technique was used to determine the elastic moduli for two dental body- 
porcelains. The sonic resonance technique involves the determination of both the flexural 
as well as the torsional resonance frequencies. From these values both Young's, Y, 
and shear moduli, G, are determined. Since two elastic constants are sufficient to describe 
completely the elastic response of isotropic materials, it was also possible to compute, by 
using Y and G, the bulk modulus, B, and the Poisson's ratio. Resonant frequency measure- 
ments taken at elevated temperatures resulted in correspondingly lower values for the elastic 
constants. Young's and shear moduli for two dental porcelains obtained in the range from 
20~ (293 K) to 500~ (773 K) are presented in this study. These data may in the future 
be used for refined stress calculations in PFM systems. 

1. Introduction 
Since the introduct ion of  porcelain-fused-to-metal 

(PFM) systems almost 20 years ago for dental pros- 
thetic devices, there has been a continued a t tempt  
to improve the application of  this combinat ion of  
two entirely different materials. 

Although meta l -ce ramic  systems are in the 
meantime an approved method for reconstructive 
dentistry,  there is still a certain risk of  cracking or 
spalling of  the veneered porcelain. These are thought 
to be mainly init iated by residual stress created by 
the manufacturing process in the entire construc- 
tion of  the appliance. The magnitude and tolerable 
limits of  such stress remains a mat ter  of  uncertainty,  
especially for new PFM systems which appear with 
regularity. Because of  the complexi ty of  PFM- 
systems, residual stresses are at t r ibuted to a number 

of  parameters. Beside other factors (see Table I), 
the development of the resultant stresses in systems 
considered can be influenced by the temperature 
dependence of  the elastic constants of  both 
materials. With regard to a refinement in evaluation 
of  these crucial stresses and consequently to develop 
more stress-free PFM-systems in the future, it 
appears, it is quite necessary to determine exact 
behaviour of  the elastic properties of  the applied 
alloys and ceramics as well. Because stress initiation 
in glass ceramics like dental porcelains can only 
occur near and/or below the glass transition tem- 
perature of  the material (Tg ~ 570 ~ C; 843 K), it is 
the purpose of  this study to present data for the 
elastic moduli  of two representative dental body- 
porcelains (A, B)~ in the range from room tem- 
perature to 500 ~ C (773 K). 

*On study leave from University of G6ttingen, D-3400 G6ttingen, West Germany. 
~Former NBS employee. 
$ A = VITA VMK 68, No. 547, Vita Zahnfabrik, Spitalgass3, D-7880 Bad Sackingen, West Germany. 

B = CERAMCO, Lot 2437, Ceramco, Inc, 20 Lake Drive, East Windsor, New Jersey 08520, USA. 
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T A B L E I Factors affecting residual stresses in dental 
PFM systems due to manufacturing process (compiled by 
Whitlock et al. [2] ) 

(a) Thermal expansion 
(b) Tg, the glass transition temperature 
(c) Trapped residuai stress (strain) 
(d) Temperature dependence of elastic modulus 
(e) CrystaUinity 
(f) Thermal conductivity 
(g) Heat capacity 
(h) Number of layered components 
(i) Relative layer thicknesses 
(j) Ability to relieve stress 

Casciani et  al. [1] performed structural studies, 
using Raman spectroscopy, on very similar materials 
(opaque dental procelains) supplied by the same 
manufacturers. Although both of the opaque por- 
celains were basically glass ceramics, significant dif- 
ferences in crystalline phases and glassy nature were 
revealed. Providing the two body-porcelains applied 
in this investigation show the same differences in 
microstructure one may infer that the structural 
situation of either material is also reflected in dif- 
ferent elastic moduli, hence different mechanical 
properties. 

2. Experimental procedure 
2.1. Specimens 
Two commercially available dental body-porcelains 
(A, B) were chosen for this investigation. Both 
materials, each of them a glass ceramic, were deliv- 
ered as powders. Specimens were prepared and fired 
as recommended by the manufactures. Sub- 
sequently the specimens were cut and ground to the 
desired dimensions of about 50mm x 9.3mm x 
1.3 mm. Finally, in order to obtain a high accuracy 
in results, the surfaces were ground and polished. 
The grinding and polishing must be performed with 
great accuracy to obtain a shape as close as possible 
to a perfect rectangular bar. Extremely good paral- 
lelism of the opposite specimen surfaces is of high 
importance for the application of the sonic res- 
onance technique, which is described in the fol- 
lowing paragraph. The precision of the most import- 
ant dimensions of the specimens, i.e. in thickness 
and width, was -+ 0.004 mm. 

2.2. Method and calculations 
To obtain some characterization of the mechanical 
behaviour of a material, the Young's modulus is 

w ASTATIC: 62-1 (M); Conneaut, Ohio 44030, USA. 

often calculated from a stress-strain curve, measur- 
ing the change in stress with the change in length 
over the elastic region. This method, however, is 
often not very applicable to brittle materials such 
as glasses and ceramics, because their range of elas- 
ticity is usually small and immediately followed by 
a sudden brittle failure when leaving that range. 

Moreover, to determine the magnitude of the 
dynamic elastic response, it is necessary to separate 
this particular behaviour of the material from other 
time-dependent responses such as retarded elasticity 
and viscous creep. These become especially import- 
ant at higher temperatures when one evaluates 
glasses and ceramics. Another side aspect of this 
study was to use a method that allows not only the 
determination of the elastic constants, but also some 
structural characteristics such as microcracking. 
This correlates strongly with the elastic moduli. 
That kind of information is difficult to obtain from 
quasi-static measurement techniques. Therefore, 
instead of the elastic procedure using the stress- 
strain curve the sonic resonance method was used 
in this investigation. This technique was originated 
by Forster [3] in 1937, and in the meantime 
researchers [4-7]  have successfully applied this 
technique on a variety of different materials. 

The experimental technique has been discussed 
in detail by Spinner and Tefft [8] and, more 
recently by Marlowe [9]. In addition, a comprehen- 
sive description of the necessary equipment has 
been provided by several authors [8-11] and will 
not be repeated here. A schematic diagram of the 
experimental arrangement employed in this study 

is shown in Fig. 1. 
In brief, a wide range variable frequency oscil- 

lator was used to generate a sinusoidal electric 
signal which was convertedto a mechanicalvibration 
of the same frequency by the driver, a high-output 
piezoelectric phonograph cartridge.w For room 
temperature measurements the mechanical move- 
ment was transmitted to a suspended specimen 
through cotton fibres. Platinum wire of 76#m 
(0.003 in.) diameter was used to hold the specimen 
for elevated temperature determinations. In order 
to make those wires more flexible, they were 
annealed by pulling them slowly through a torch. 
A second suspension thread (or wire) at the other 
end of the specimen then conveyed the resultant 
excitation to another phonograph cartridge desig- 
nated as pickup. The pickup needle re-converted 
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Figure 1 Instruments arrangement for 
dynamic resonance measurements. 

the mechanical vibration to an electronic signal 
which was amplified, filtered, and passed into a 
voltmeter and on to the vertical plates of an 
oscilloscope. The electrical signal from the oscillator 
was also transmitted to a frequency counter. The 
method of suspending specimens for obtaining 
torsional as well as flexural vibrations is illustrated 
in detail in Fig. 2. It is important that the fibres 
are attached to opposite sides of  the prismatic bar. 

Elasticity measurements were made by varying 
the oscillator frequency until the suspended sample 
vibrated in resonance. Under such a condition the 
amplitude of vibration reached a maximum which 
was subsequently detected by both the oscilloscope 
and the voltmeter. The corresponding resonant 
frequency was taken as the average of three readings. 

Before starting the measurements on the pre- 
pared dental ceramic specimens the entire experi- 
mental system was calibrated by means of a poly- 
crystalline alumina resonance bar (NBS, SRM 
No. 718). The flexural and torsional resonant fre- 
quencies were then determined during heating and 
cooling over a temperature range from room tem- 
perature (20 ~ C; 293K) to 500~ (773K). Data 
were taken at temperature intervals of approxi- 
mately 50 ~ C. After each temperature increase upon 

To 
To Pickup 

Driver 

Fibres- \  

~ % -  Specimen 

Figure 2 Method of suspending specimens for obtaining 
flexural as well as torsional resonance frequencies; from 
Spinner and Tefft [8]. 
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heating (or decrease during cooling) the equipment, 
including the specimen, was allowed to approach 
thermal equilibrium before the measurements were 
performed. A typical experimental run lasted about 
24h. 

As stated previously, the elastic moduli can be 
calculated from the resonant frequencies, the mass 
and the dimensions of a specimen. The equations 
used were those for prisms of rectangular cross- 
section proposed by Pickett [ 12] and later modified 
by Hasselman [13]. In order to obtain precise 
moduli data at room and elevated temperatures, 
two corrections were necessary. The first correction, 
concerning the resonant frequencies, was made for 
the effect of the platinum wires, used in the high 
temperature measurements. The equation used in 
this correction was: 

f p t  = ( fco / fpo) fp t ,  (1) 

where leo is the resonant frequency at room tem- 
perature with the specimen suspended by cotton 
strings; fpo is the resonant frequency at room tem- 
perature with the specimen suspended by platinum 
wires; let  is the measured resonant frequency at 
temperature t, with platinum as support strings; 
and J~t is the corrected value at temperature t, 
for a specimen suspended with platinum wires. 

The second adjustment, to correct moduli for 
the effects o~ dimensional changes due to thermal 
expansion at elevated temperatures was developed 
by Ault and Ueltz [14]: 

Et = Eo(f t / fo)2/(1 + aAt) ,  (2) 

where the elastic moduli of any temperature, Et, 
are expressed in terms of the value at room tem- 
perature, Eo, and the corresponding resonant fre- 
quencies, f t  and fo. The factor (1 + aAt )  contains 
the coefficient of linear thermal expansion (a) and 
the difference between the temperature of 



TA BL E I I Elastic constants of porcelains A and B at room temperature (20 ~ C; 293 K) 

Material Young's Shear Bulk 
modulus modulus modulus 
(GPa) (GPa) (GPa) 

Poisson's 
ratio 

Porcelain A* 
(density 2.49 g cm -3) 

At start of run 1 68.0 28.5 37.1 0.19 
At start of run 2 69.4 29.1 37.8 0.19 

Porcelain Bt 
(density 2.43 g cm-3 ) 

At start of run 1 69.2 29.0 37.4 0.19 
At start of run 2 69.9 29.4 37.5 0.19 

*A, VITA-porcelain. 
~" B, CERAMCO-porcelain. 

measurement, t, and room temperature.  For 
calculations in this study the thermal expansion 
data reported by  Whitlock et al. [2] were used. 

3. Results and discussion 
Both of  the dental porcelains investigated in this 
study were heated to the maximum test tempera- 
ture twice. During these thermal cycles the resonant 
frequency measurements were conducted during 
heating and cooling. The results obtained from 
measurements at room temperature (20 ~ C; 293 K) 

are shown in Table II. The experimental error 
involved in measuring the elastic moduli  by the 
sonic resonance technique was studied by Marlowe 
and Wilder [15]. They reported the overall error 
for room temperature measurements should be less 
than 1.3 % with dimensional inaccuracy contribu- 
ting the largest error. Spinner et al. [ 16] concluded 
that Young's modulus should be exact to four sig- 
nificant figures with the technique employed.  

In the present study, an analysis of  the possible 
sources of  error leads to an inaccuracy of  1.5% for 
the determined values. The major sources of  inde- 
terminacy arise from possible uncertainties in 
dimensions and parallelism, density, thermal expan- 
sion and calibration. 

From Table [I it can be seen that there is no 
appreciable difference in the elastic behaviour 
between the material A and B before the first 
thermal cycle. Furthermore,  the difference in the 
moduli  data became even smaller after the first run 
and lies well within the experimental  inaccuracy of 
the applied method.  It should be emphasized that 
the presented sets of  data are only valid for a given 
density and accordingly may vary with an increment 
or decrement in porosity. 

The temperature dependence of  both theYoung's  
and shear modulus from room temperature to 

500 ~ C (773 K) is represented graphically in Figs. 3 
to 8. In either case with increasing temperature 
both of  the measured resonance frequencies shift 
to lower values. This results in correspondingly 
lower values for the elastic constants. Material A 

shows a drop in the elastic constants of  7% up to 
500~ (773K)  whereas material B exhibits a 
decrease in its elastic response of  only 5% up to 
the same temperature.  This rate of  decrease of  
modulus with temperature (namely a drop of  about 
1% in modulus with each increase in 100 ~ C) is 
consistent with the observed modulus - tempera tu re  
behaviour for a wide range of  ceramic materials 
[17]. 
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Figure3 Young's modulus (Y)-temperature data for 
porcelain A; 1st run. 

527 



29.5 

29,0 

28.5 

28.0 
'5 

=E 
27.5 

,r o~ 
27.0 

26.5 

26.0 

i t i i [ 
x G for a non-microcracked 
~ specimen 

�9 
0 �9 

�9 Heating curve r~'lst Run 
O Cooling curve 

i i i L L 
100 200 300 400 500 

Tamp (~ 
600 

Figure 4 Shear modulus (G)-temperature data for por- 
celain A; 1st run. 

Besides this general behaviour, another import- 
ant detail should be noted. The cooling curve, from 
the maximum test temperature down to room tem- 
perature, exhibits a hysteresis in the plots of  elastic 
constants against temperature.  As can be seen in 
Figs. 3 to 8, the departure between the heating and 
cooling curves occurs at about 350 ~ C (623 K). The 
cooling curve then shows a range of  a fairly linear 
increase in the elastic response with continuing 
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Figure 5 Young's modulus (Y)-temperature data for per- 
celain A; 2rid run. 
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Figure 6 Young's modulus (Y)-temperature data for por- 
celain B; 1st run. 

cooling from near 200 ~ C (473 K) down to room 
temperature,  before it tends to level out. Such a dif- 
ference in behaviour during the heating and cooling 
process, is characteristic for a microcracked material 
[18-23] .  One possible interpretat ion of  such a 

hysteresis in the elastic modul i - t empera tu re  data is 
that microcracks heal during heating and then some 
open again upon cooling below approximately 
200 ~ C (473 K). 

The Young's modulus - tempera ture  heating 
curves shown in Figs. 3, 5, 6 and 8, exhibit a fairly 

i ; i i i 

"x G for a non-microcracked 
29.5 - o ~  specimen 

0 O 0  29.0  + 
28.5 

28.0 

27.5 �9 Heating curve~ 1st Run 
o Cooling curve J 

27.0 i I i i i 
100 200 300 400 500 600 

Temp {~ 

Figure 7 Shear modulus (G)-temperature data for por- 
celain B; 1st run. 
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Figure 8 Young's modulus (Y)-temperature data for por- 
celain B; 2rid run. 

sharp modulus drop within the first 200 ~ C (473 K), 
followed by a range with a comparatively low slope 
before the rate of decrement in Young's modulus 
increases again from 300~ (573K). It is very 
likely that this behaviour between 200 ~ C (473 K) 
and 300~ (573K) is attributed to microcrack 
healing. The reduction of the elastic modulus with 
the introduction of microcracks into a material 
has been discussed by several authors [24-28]. 
Hence, it follows that an increase in the number 
or size of cracks results in lower elastic moduli. 

Crack formation in the materials investigated in 
this study is firmly established in the literature. It 
is well known that microcracks in ceramics can be 
attributed to a variety of mechanisms that produce 
localized internal stresses [23]. For example, phase 
transformations, differing thermal expansions in a 
multiphase body, thermal history or atmospheric 
effects can cause microcracking. Thus, it appears, 
further investigations are necessary in this case to 
establish the exact cause. 

It should be noticed that after the first heating 
and cooling cycle, the elastic moduli at room tem- 
perature shift to higher values, whereas at the end 
of the second run they return to the same value 
obtained at the start of that cycle (see Table II and 
Figs. 3, 5, 6 and 8). This indicates definitely that 
during the first heating process an unknown num- 
ber of microcracks heal and never open again. It is 
possible that the grinding procedure to which the 
specimens were subjected initiated some additional 

microcracking or microcrack growth which was sub- 
sequently removed during the first thermal cycle. 

An attempt has been made to derive moduli data 
from the plots of  elastic constants against tempera- 
ture for a non-microcracked specimen. Assuming 
that basically all of the microcracks heal dur~ ag 
heating, then upon cooling from the maximum t~ 't 
temperature down to about 200~ (473 K), tt, e 
modulus-temperature behaviour would be that of 
a non-microcracked specimen. Hence, one should 
be able to extrapolate the approximately linear part 
of the cooling curve to room temperature. As may 
be seen from the corresponding Figs. 3 to 8, the 
values for an assumed non-microcracked body are 
only slightly higher (1 to 1.5%) than from the data 
actually obtained, 

In extreme cases, the room-temperature modu- 
lus for a microcracked material may be only 10 to 
20% of that observed for the corresponding non- 
microcracked material [29-32]. Thus, the extent 
of microcracking damage observed for the dental 
porcelains (this study) is relatively slight. (The 
Appendix gives a brief discussion of the quanti- 
tative relation between modulus decrement, the 
number density and size of microcracks.) 

4. Conclusions 
The resonance method was applied to determine 
the elastic constants of two dental body porcelains. 
For both materials data are presented for the tem- 
perature range 20 ~ C (293 K) to 500~ (773 K). 
The maximum decrease in the elastic moduli in the 
temperature range mentioned before, is up to 7%. 
The recorded hysteresis in the elastic modul i -  
temperature curves indicates that both porcelains 
are slightly microcracked. All in all, materials A and 
B virtually showthe same dynamic elasticbehaviour. 
The determined elastic constants as a function of 
temperature, are now available for more precise 
stress calculations in PFM systems. 

Appendix 
Theories by Walsh [25], Salganik [26, 27], and 
Budiansky and O'Connell [28] relate the modulus 
decrement for a microcracked material to the num- 
ber density and size of microcracks in the material. 
Each of the three theories mentioned above predict 
similar microcrack-modu]us decrement behaviour, 
especially for a dilute concentration ofmicrocracks 
[321. 

For the Salganik theory [26, 27] in particular, 
the decrement in Young's modulus is given by: 
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Y = Y o [ 1 - - f ( v o ) N ( a ) a ] ,  (A1)  

where Y is the Young 's  modulus  for the micro-  

cracked body ,  Y0 is the Young 's  modulus  for the 

non-microcracked  body,  N is the number  densi ty  

o f  microcracks,  (a) is the mean  microcrack radius, 

and Vo is the Poisson's rat io for the non-  

microcracked  body.  The f u n c t i o n f ( v 0 )  is, in turn,  
given by:  

f (vo ) = 16(10 - -  3Vo)(1 - -  vg) 

45(2 - -  Vo) 

Solving Equa t ion  A 1 for the p roduc t  N ( a  )3 gives 

= [ Y ~  1 1 
N ( a ) 3  k--Y-o--o 1[~-~o))" (A2)  

For  the dental  porcelains studied here. 

f (vo)  = 1.7855 for v o = 0.19 
and 

Yo- -  Y 
- - ~  0.015 (see Sect ion 3). 

Yo 
For  these f (v0)  and (Yo - -  Y)/Yo values, 

N ( a )  3 ~_ 8.401 x 10 -3. (A3)  

Using the Salganik t h e o r y � 8 2  one  easily obta ins  an 

est imate for the p roduc t  N(a)  3 f rom the meas- 

ured values o f  Y, Y0 and v0. In order  to make  fur- 

ther progress, one must  obtain  in fo rmat ion  about  

ei ther the microcrack  number  density,  N, or the 

mean microcrack radius, (a). As an aid in esti- 

mat ing (a),  one may  appeal to the exper imenta l  

observat ion that  microcracks  induced by localized 

stresses are of ten  one to several grain diameters  in 

length [33 - 3  5]. However ,  for the dental  porcelains 

considered in this paper ,  the  observed grain size 

range is very broad (3 to 20/~m, wi th  a small number  

o f  particles up to  100/~m), making it diff icult  to  
use such arguments  to obta in  a meaningful  est imate 

of  (a)*. If, merely for the sake o f  example,  we 

make the approx imat ion :  

<a) ~ 5.0/am = 5.0 x 10 -4 cm, 

then f rom Equa t ion  A3,  the microcrack  number  

densi ty is: 

N ~ 3 . 4 x  104 cm -3.  
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